Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Analysis of benchmark results for reactor physics of LWR next generation fuels

Kitada, Takanori*; Okumura, Keisuke; Unesaki, Hironobu*; Saji, Etsuro*

Proceedings of International Conference on Physics of Fuel Cycles and Advanced Nuclear Systems; Global Developments (PHYSOR 2004) (CD-ROM), 8 Pages, 2004/04

Burnup calculation benchmark has been carried out for the LWR next generation fuels aiming at high burnup up to 70 GWd/t with UO$$_{2}$$ and MOX. Based on the submitted results by many benchmark participants, the present status of calculation accuracy has been confirmed for reactor physics parameters of the LWR next generation fuels, and the factors causing the calculation differences were analyzed in detail. Moreover, the future experiments and research subjects necessary to reduce the calculation differences were discussed and proposed.

Journal Articles

Validation of integrated burnup code system SWAT2 by the analyses of isotopic composition of spent nuclear fuel

Suyama, Kenya; Mochizuki, Hiroki*; Okuno, Hiroshi; Miyoshi, Yoshinori

Proceedings of International Conference on Physics of Fuel Cycles and Advanced Nuclear Systems; Global Developments (PHYSOR 2004) (CD-ROM), 10 Pages, 2004/04

This paper provides validation results of SWAT2, the revised version of SWAT, which is a code system combining point burnup code ORIGEN2 and continuous energy Monte Carlo code MVP, by the analysis of post irradiation examinations (PIEs). Some isotopes show differences of calculation results between SWAT and SWAT2. However, generally, the differences are smaller than the error of PIE analysis that was reported in previous SWAT validation activity, and improved results are obtained for several important fission product nuclides. This study also includes comparison between an assembly and a single pin cell geometry models.

Journal Articles

Research and development activities for accelerator driven system at JAERI

Tsujimoto, Kazufumi; Sasa, Toshinobu; Nishihara, Kenji; Oigawa, Hiroyuki; Takano, Hideki*

Proceedings of International Conference on Physics of Fuel Cycles and Advanced Nuclear Systems; Global Developments (PHYSOR 2004) (CD-ROM), 8 Pages, 2004/04

The Japan Atomic Energy Research Institute (JAERI) is developing an Accelerator Driven System (ADS) for transmutation of nuclear waste such as minor actinide (MA) and long-lived fission product (LLFP). To study and evaluate the feasibility of ADS by physical and engineering viewpoints, the Transmutation Experimental Facility (TEF) is proposed under a framework of J-PARC (Japan Proton Accelerator Research Complex) project. The TEF consists of two facilities named as Transmutation Physics Experimental Facility (TEF-P) and ADS Target Test Facility (TEF-T). The TEF-P consists of a zero-power critical assembly which is operated with a low power proton beam to research the reactor physics and the controllability of ADS. The TEF-T is a facility for material irradiation and partial mockup of beam window which can accept a maximum 600MeV-200kW proton beam into the Pb-Bi eutectic target. The purposes, experimental items and the specifications of the facilities are described.

3 (Records 1-3 displayed on this page)
  • 1